Search results for " 35R01"

showing 3 items of 3 documents

Existence of dynamical low-rank approximations to parabolic problems

2021

The existence and uniqueness of weak solutions to dynamical low-rank evolution problems for parabolic partial differential equations in two spatial dimensions is shown, covering also non-diagonal diffusion in the elliptic part. The proof is based on a variational time-stepping scheme on the low-rank manifold. Moreover, this scheme is shown to be closely related to practical methods for computing such low-rank evolutions.

Algebra and Number TheoryPartial differential equationRank (linear algebra)Applied MathematicsNumerical Analysis (math.NA)010103 numerical & computational mathematics01 natural sciencesManifold010101 applied mathematics35K15 35R01 (Primary) 15A69 65L05 (Secondary)Computational MathematicsMathematics - Analysis of PDEsScheme (mathematics)FOS: MathematicsApplied mathematicsUniquenessMathematics - Numerical Analysisddc:5100101 mathematicsDiffusion (business)Analysis of PDEs (math.AP)Mathematics
researchProduct

Regular 1-harmonic flow

2017

We consider the 1-harmonic flow of maps from a bounded domain into a submanifold of a Euclidean space, i.e. the gradient flow of the total variation functional restricted to maps taking values in the manifold. We restrict ourselves to Lipschitz initial data. We prove uniqueness and, in the case of a convex domain, local existence of solutions to the flow equations. If the target manifold has non-positive sectional curvature or in the case that the datum is small, solutions are shown to exist globally and to become constant in finite time. We also consider the case where the domain is a compact Riemannian manifold without boundary, solving the homotopy problem for 1-harmonic maps under some …

Applied Mathematics010102 general mathematicsMathematical analysisBoundary (topology)Total variation flow; harmonic flow; well-posednessRiemannian manifoldLipschitz continuitySubmanifold01 natural sciencesManifoldDomain (mathematical analysis)35K51 35A01 35A02 35B40 35D35 35K92 35R01 53C21 68U10010101 applied mathematicsMathematics - Analysis of PDEsFlow (mathematics)FOS: MathematicsMathematics::Differential GeometrySectional curvature0101 mathematicsAnalysisAnalysis of PDEs (math.AP)MathematicsCalculus of Variations and Partial Differential Equations
researchProduct

A rigidity problem on the round sphere

2015

We consider a class of overdetermined problems in rotationally symmetric spaces, which reduce to the classical Serrin's overdetermined problem in the case of the Euclidean space. We prove some general integral identities for rotationally symmetric spaces which imply a rigidity result in the case of the round sphere.

Mathematics - Differential GeometryPure mathematicsEuclidean spaceApplied MathematicsGeneral Mathematics010102 general mathematicsMathematics::Analysis of PDEsComputer Science::Numerical Analysis01 natural sciencesOverdetermined systemrotationally symmetric spaceMathematics - Analysis of PDEsRigidity (electromagnetism)rigidityDifferential Geometry (math.DG)Settore MAT/05 - Analisi Matematica0103 physical sciencesRound sphereFOS: MathematicsPrimary 35R01 35N25 Secondary: 53C24 58J05Overdetermined PDE010307 mathematical physics0101 mathematicsAnalysis of PDEs (math.AP)Mathematics
researchProduct